Quantitative maximal diameter rigidity of positive Ricci curvature
报告人:任天寅 博士后(厦门大学)
时 间:2025年5月19日(星期一),上午9:30-10:30
地 点:海纳苑2幢202
摘 要:In Riemannian geometry, the Cheng’s maximal diameter rigidity theorem says that if a complete $n$-manifold $M$ of Ricci curvature, $\Ric_M \ge (n − 1)$, has the maximal diameter $\pi$, then $M$ is isometric to the unit sphere. The main result in this paper is a quantitative maximal diameter rigidity: if $M$ satisfies that $\Ric_M \ge n − 1$, $\diam(M) \approx \pi$, and the Riemannian universal cover of every metric ball in $M$ of a definite radius satisfies a Riefenberg condition, then $M$ is diffeomorphic and bi-H\older close to unit sphere, This work is a joint with Professor Xiaochun Rong.
联系人:江文帅(wsjiang@zju.edu.cn)