中国·新濠入口手机版-www.8663.com|官方网站

新濠8663入口手机版

A half-space problem on the full Euler-Poisson system

来源:新濠8663入口手机版 发布时间:2020-11-02   398

报告人:段仁军 教授(香港中文大学)

时间:2020年11月10日 (星期二)下午15:00-16:00

地点:腾讯会议198 347 803 

      工商楼200-9 

摘要:Concerning the initial-boundary value problem on the full Euler-Poisson system for ions over a half line, we establish the existence of stationary solutions under the Bohm criterion similar to the isentropic case and further obtain the large time asymptotic stability of small-amplitude stationary solutions provided that the initial perturbation is sufficiently small in some weighted Sobolev spaces. Moreover, the convergence rate of the solution toward the stationary solution is obtained. The proof is based on the energy method. A key point is to capture the positivity of the temporal energy dissipation functional and boundary terms with suitable space weight functions either algebraic or exponential depending on whether or not the incoming far-field velocity is critical. This work is joint with Haiyan Yin and Changjiang Zhu. 

 

联系人:张挺老师(zhangting79@zju.edu.cn


Copyright © 2023 中国·新濠入口手机版-www.8663.com|官方网站    版权所有

    浙ICP备05074421号

技术支持: 创高软件     管理登录

    您是第 1000 位访问者

Baidu
sogou